监控行业

首页 » 常识 » 常识 » 数据分析师最常用的9种方法,每种方法对应
TUhjnbcbe - 2024/10/4 11:38:00

这里给大家介绍数据分析师最常用的9种方法,每种方法对应不同的场景。学会下面这几个,几乎所有的数据分析场景都能轻松驾驭!

一、公式拆解

所谓公式拆解法就是针对某个指标,用公式层层分解该指标的影响因素。举例:分析某产品的销售额较低的原因,用公式法分解

二、对比分析

对比法就是用两组或两组以上的数据进行比较,是最通用的方法。

我们知道孤立的数据没有意义,有对比才有差异。比如在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。对比法可以发现数据变化规律,使用频繁,经常和其他方法搭配使用。

下图的AB公司销售额对比,虽然A公司销售额总体上涨且高于B公司,但是B公司的增速迅猛,高于A公司,即使后期增速下降了,最后的销售额还是赶超。

对于初学者,我的建议是跟着老师学习,最好是同时有长期教课经验和牛逼工作经验的老师,保证他确实是一个实战数据分析大佬,又确实能教会别人,两者缺一,要不然就是把你教成书呆子,要不就是大肚茶壶倒饺子——有货说不出。

还有就是坚持,三天打鱼两天晒网的学习是不现实的,只要你能不断的坚持,快的话几个星期就能入门了。如果有什么学习上的问题大家都可以在我的学习群里提出来,我看到了也会帮大家解答,同时群里也有一起打卡学习的同伴,互相监督,比一个人埋头学习更有效率。

三、A/Btest

A/Btest,是将Web或App界面或流程的两个或多个版本,在同一时间维度,分别让类似访客群组来访问,收集各群组的用户体验数据和业务数据,最后分析评估出最好版本正式采用。A/Btest的流程如下:

(1)现状分析并建立假设:分析业务数据,确定当前最关键的改进点,作出优化改进的假设,提出优化建议;比如说我们发现用户的转化率不高,我们假设是因为推广的着陆页面带来的转化率太低,下面就要想办法来进行改进了

(2)设定目标,制定方案:设置主要目标,用来衡量各优化版本的优劣;设置辅助目标,用来评估优化版本对其他方面的影响。

(3)设计与开发:制作2个或多个优化版本的设计原型并完成技术实现。

(4)分配流量:确定每个线上测试版本的分流比例,初始阶段,优化方案的流量设置可以较小,根据情况逐渐增加流量。

(5)采集并分析数据:收集实验数据,进行有效性和效果判断:统计显著性达到95%或以上并且维持一段时间,实验可以结束;如果在95%以下,则可能需要延长测试时间;如果很长时间统计显著性不能达到95%甚至90%,则需要决定是否中止试验。

(6)最后:根据试验结果确定发布新版本、调整分流比例继续测试或者在试验效果未达成的情况下继续优化迭代方案重新开发上线试验。流程图如下:

四、象限分析

通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常与产品分析、市场分析、客户管理、商品管理等。比如,下图是一个广告点击的四象限分布,X轴从左到右表示从低到高,Y轴从下到上表示从低到高。

高点击率高转化的广告,说明人群相对精准,是一个高效率的广告。高点击率低转化的广告,说明点击进来的人大多被广告吸引了,转化低说明广告内容针对的人群和产品实际受众有些不符。高转化低点击的广告,说明广告内容针对的人群和产品实际受众符合程度较高,但需要优化广告内容,吸引更多人点击。低点击率低转化的广告,可以放弃了。还有经典的RFM模型,把客户按最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)三个维度分成八个象限。

象限法的优势:

(1)找到问题的共性原因

通过象限分析法,将有相同特征的事件进行归因分析,总结其中的共性原因。例如上面广告的案例中,第一象限的事件可以提炼出有效的推广渠道与推广策略,第三和第四象限可以排除一些无效的推广渠道;

(2)建立分组优化策略针对投放的象限分析法可以针对不同象限建立优化策略,例如RFM客户管理模型中按照象限将客户分为重点发展客户、重点保持客户、一般发展客户、一般保持客户等不同类型。给重点发展客户倾斜更多的资源,比如VIP服务、个性化服务、附加销售等。给潜力客户销售价值更高的产品,或一些优惠措施来吸引他们回归。

五、帕累托分析

帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业。找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。

一般地,会用在产品分类上,去测量并构建ABC模型。比如某零售企业有个SKU以及这些SKU对应的销售额,那么哪些SKU是重要的呢,这就是在业务运营中分清主次的问题。

常见的做法是将产品SKU作为维度,并将对应的销售额作为基础度量指标,将这些销售额指标从大到小排列,并计算截止当前产品SKU的销售额累计合计占总销售额的百分比。

百分比在70%(含)以内,划分为A类。百分比在70~90%(含)以内,划分为B类。百分比在90~%(含)以内,划分为C类。以上百分比也可以根据自己的实际情况调整。

ABC分析模型,不光可以用来划分产品和销售额,还可以划分客户及客户交易额等。比如给企业贡献80%利润的客户是哪些,占比多少。假设有20%,那么在资源有限的情况下,就知道要重点维护这20%类客户。

六、漏斗分析

漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。

上图是经典的营销漏斗,形象展示了从获取用户到最终转化成购买这整个流程中的一个个子环节。相邻环节的转化率则就是指用数据指标来量化每一个步骤的表现。所以整个漏斗模型就是先将整个购买流程拆分成一个个步骤,然后用转化率来衡量每一个步骤的表现,最后通过异常的数据指标找出有问题的环节,从而解决问题,优化该步骤,最终达到提升整体购买转化率的目的。

整体漏斗模型的核心思想其实可以归为分解和量化。比如分析电商的转化,我们要做的就是监控每个层级上的用户转化,寻找每个层级的可优化点。对于没有按照流程操作的用户,专门绘制他们的转化模型,缩短路径提升用户体验。

还有经典的黑客增长模型,AARRR模型,指Acquisition、Activation、Retention、Revenue、Referral,即用户获取、用户激活、用户留存、用户收益以及用户传播。这是产品运营中比较常见的一个模型,结合产品本身的特点以及产品的生命周期位置,来

1
查看完整版本: 数据分析师最常用的9种方法,每种方法对应