监控行业

首页 » 常识 » 诊断 » YGC问题排查,又涨姿势了CSDN
TUhjnbcbe - 2025/6/22 8:26:00

作者

骆俊武

来源

IT人的职场进阶

在高并发下,Java程序的GC问题属于很典型的一类问题,带来的影响往往会被进一步放大。不管是「GC频率过快」还是「GC耗时太长」,由于GC期间都存在StopTheWorld问题,因此很容易导致服务超时,引发性能问题。

我们团队负责的广告系统承接了比较大的C端流量,平峰期间的请求量基本达到了上千QPS,过去也遇到了很多次GC相关的线上问题。

这篇文章,我再分享一个更棘手的YoungGC耗时过长的线上案例,同时会整理下YGC相关的知识点,希望让你有所收获。内容分成以下2个部分:

从一次YGC耗时过长的案例说起YGC的相关知识点总结

从一次YGC耗时过长的案例说起

今年4月份,我们的广告服务在新版本上线后,收到了大量的服务超时告警,通过下面的监控图可以看到:超时量突然大面积增加,1分钟内甚至达到了上千次接口超时。下面详细介绍下该问题的排查过程。

1.检查监控

收到告警后,我们第一时间查看了监控系统,立马发现了YoungGC耗时过长的异常。我们的程序大概在21点50左右上线,通过下图可以看出:在上线之前,YGC基本几十毫秒内完成,而上线后YGC耗时明显变长,最长甚至达到了3秒多。

由于YGC期间程序会StopTheWorld,而我们上游系统设置的服务超时时间都在几百毫秒,因此推断:是因为YGC耗时过长引发了服务大面积超时。

按照GC问题的常规排查流程,我们立刻摘掉了一个节点,然后通过以下命令dump了堆内存文件用来保留现场。

jmap-dump:format=b,file=heappid

最后对线上服务做了回滚处理,回滚后服务立马恢复了正常,接下来就是长达1天的问题排查和修复过程。

2.确认JVM配置

用下面的命令,我们再次检查了JVM的参数

psaux

grepapplicationName=adsearch

-Xms4g-Xmx4g-Xmn2g-XssK-XX:ParallelGCThreads=5-XX:+UseConcMarkSweepGC-XX:+UseParNewGC-XX:+UseCMSCompactAtFullCollection-XX:CMSInitiatingOccupancyFraction=80

可以看到堆内存为4G,新生代和老年代均为2G,新生代采用ParNew收集器。

再通过命令jmap-heappid查到:新生代的Eden区为1.6G,S0和S1区均为0.2G。

本次上线并未修改JVM相关的任何参数,同时我们服务的请求量基本和往常持平。因此猜测:此问题大概率和上线的代码相关。

3.检查代码

再回到YGC的原理来思考这个问题,一次YGC的过程主要包括以下两个步骤:

1、从GCRoot扫描对象,对存活对象进行标注2、将存活对象复制到S1区或者晋升到Old区

根据下面的监控图可以看出:正常情况下,Survivor区的使用率一直维持在很低的水平(大概30M左右),但是上线后,Survivor区的使用率开始波动,最多的时候快占满0.2G了。而且,YGC耗时和Survivor区的使用率基本成正相关。因此,我们推测:应该是长生命周期的对象越来越多,导致标注和复制过程的耗时增加。

再回到服务的整体表现:上游流量并没有出现明显变化,正常情况下,核心接口的响应时间也基本在ms以内,YGC的频率大概每8秒进行1次。

很显然,对于局部变量来说,在每次YGC后就能够马上被回收了。那为什么还会有如此多的对象在YGC后存活下来呢?

我们进一步将怀疑对象锁定在:程序的全局变量或者类静态变量上。但是diff了本次上线的代码,我们并未发现代码中有引入此类变量。

4.对dump的堆内存文件进行分析

代码排查没有进展后,我们开始从堆内存文件中寻找线索,使用MAT工具导入了第1步dump出来的堆文件后,然后通过DominatorTree视图查看到了当前堆中的所有大对象。

立马发现NewOldMappingService这个类所占的空间很大,通过代码定位到:这个类位于第三方的client包中,由我们公司的商品团队提供,用于实现新旧类目转换(最近商品团队在对类目体系进行改造,为了兼容旧业务,需要进行新旧类目映射)。

进一步查看代码,发现这个类中存在大量的静态HashMap,用于缓存新旧类目转换时需要用到的各种数据,以减少RPC调用,提高转换性能。

原本以为,非常接近问题的真相了,但是深入排查发现:这个类的所有静态变量全部在类加载时就初始化完数据了,虽然会占到多M的内存,但是之后基本不会再新增数据。并且,这个类早在3月份就上线使用了,client包的版本也一直没变过。

经过上面种种分析,这个类的静态HashMap会一直存活,经过多轮YGC后,最终晋升到老年代中,它不应该是YGC持续耗时过长的原因。因此,我们暂时排除了这个可疑点。

5.分析YGC处理Reference的耗时

团队对于YGC问题的排查经验很少,不知道再往下该如何分析了。基本扫光了网上可查到的所有案例,发现原因集中在这两类上:

(1)对存活对象标注时间过长:比如重载了Object类的Finalize方法,导致标注FinalReference耗时过长;或者String.intern方法使用不当,导致YGC扫描StringTable时间过长。

(2)长周期对象积累过多:比如本地缓存使用不当,积累了太多存活对象;或者锁竞争严重导致线程阻塞,局部变量的生命周期变长。

针对第1类问题,可以通过以下参数显示GC处理Reference的耗时-XX:+PrintReferenceGC。添加此参数后,可以看到不同类型的reference处理耗时都很短,因此又排除了此项因素。

6.再回到长周期对象进行分析

再往后,我们添加了各种GC参数试图寻找线索都没有结果,似乎要黔驴技穷,没有思路了。综合监控和种种分析来看:应该只有长周期对象才会引发我们这个问题。

折腾了好几个小时,最终峰回路转,一个小伙伴重新从MAT堆内存中找到了第二个怀疑点。

从上面的截图可以看到:大对象中排在第3位的ConfigService类进入了我们的视野,该类的一个ArrayList变量中竟然包含了W个对象,而且大部分都是相同的元素。

ConfigService这个类在第三方Apollo的包中,不过源代码被公司架构部进行了二次改造,通过代码可以看出:问题出在了第11行,每次调用getConfig方法时都会往List中添加元素,并且未做去重处理。

我们的广告服务在apollo中存储了大量的广告策略配置,而且大部分请求都会调用ConfigService的getConfig方法来获取配置,因此会不断地往静态变量namespaces中添加新对象,从而引发此问题。

至此,整个问题终于水落石出了。这个BUG是因为架构部在对apolloclient包进行定制化开发时不小心引入的,很显然没有经过仔细测试,并且刚好在我们上线前一天发布到了中央仓库中,而公司基础组件库的版本是通过super-pom方式统一维护的,业务无感知。

7.解决方案

为了快速验证YGC耗时过长是因为此问题导致的,我们在一台服务器上直接用旧版本的apolloclient包进行了替换,然后重启了服务,观察了将近20分钟,YGC恢复正常。

最后,我们通知架构部修复BUG,重新发布了super-pom,彻底解决了这个问题。

YGC的相关知识点总结

通过上面这个案例,可以看到YGC问题其实比较难排查。相比FGC或者OOM,YGC的日志很简单,只知道新生代内存的变化和耗时,同时dump出来的堆内存必须要仔细排查才行。

另外,如果不清楚YGC的流程,排查起来会更加困难。这里,我对YGC相关的知识点再做下梳理,方便大家更全面的理解YGC。

1.5个问题重新认识新生代

YGC在新生代中进行,首先要清楚新生代的堆结构划分。新生代分为Eden区和两个Survivor区,其中Eden:from:to=8:1:1(比例可以通过参数–XX:SurvivorRatio来设定),这是最基本的认识。

(1)为什么会有新生代?

如果不分代,所有对象全部在一个区域,每次GC都需要对全堆进行扫描,存在效率问题。分代后,可分别控制回收频率,并采用不同的回收算法,确保GC性能全局最优。

(2)为什么新生代会采用复制算法?

新生代的对象朝生夕死,大约90%的新建对象可以被很快回收,复制算法成本低,同时还能保证空间没有碎片。虽然标记整理算法也可以保证没有碎片,但是由于新生代要清理的对象数量很大,将存活的对象整理到待清理对象之前,需要大量的移动操作,时间复杂度比复制算法高。

(3)为什么新生代需要两个Survivor区?

为了节省空间考虑,如果采用传统的复制算法,只有一个Survivor区,则Survivor区大小需要等于Eden区大小,此时空间消耗是8*2,而两块Survivor可以保持新对象始终在Eden区创建,存活对象在Survivor之间转移即可,空间消耗是8+1+1,明显后者的空间利用率更高。

(4)新生代的实际可用空间是多少?

YGC后,总有一块Survivor区是空闲的,因此新生代的可用内存空间是90%。在YGC的log中或者通过jmap-heappid命令查看新生代的空间时,如果发现capacity只有90%,不要觉得奇怪。

(5)Eden区是如何加速内存分配的?

HotSpot虚拟机使用了两种技术来加快内存分配。分别是bump-the-pointer和TLAB(ThreadLocalAllocationBuffers)。

由于Eden区是连续的,因此bump-the-pointer在对象创建时,只需要检查最后一个对象后面是否有足够的内存即可,从而加快内存分配速度。

TLAB技术是对于多线程而言的,在Eden中为每个线程分配一块区域,减少内存分配时的锁冲突,加快内存分配速度,提升吞吐量。

2.新生代的4种回收器

(1)SerialGC(串行回收器),最古老的一种,单线程执行,适合单CPU场景。

(2)ParNew(并行回收器),将串行回收器多线程化,适合多CPU场景,需要搭配老年代CMS回收器一起使用。

(3)ParallelGC(并行回收器),和ParNew不同点在于它

1
查看完整版本: YGC问题排查,又涨姿势了CSDN