监控行业

首页 » 常识 » 诊断 » 京东Flink优化与技术实践
TUhjnbcbe - 2020/12/30 13:50:00
咨询白癜风治疗 http://www.tlmymy.com/

分享嘉宾:付海涛京东高级技术专家

编辑整理:赵明明

出品平台:DataFunTalk

导读:Flink是目前流式处理领域的热门引擎,具备高吞吐、低延迟的特点,在实时数仓、实时风控、实时推荐等多个场景有着广泛的应用。京东于年开始基于Flink+K8s深入打造高性能、稳定、可靠、易用的实时计算平台,支撑了京东内部多条业务线平稳度过、双11多次大促。本次讲演将分享京东Flink计算平台在容器化实践过程中遇到的问题和方案,在性能、稳定性、易用性等方面对社区版Flink所做的深入的定制和优化,以及未来的展望和规划。主要内容包括:

实时计算演进

Flink容器化实践

Flink优化改进

未来规划

01实时计算引进1.发展历程

最初大数据的模式基本都是T+1,但是随着业务发展,对数据实时性的要求越来越高,比如对于一个数据,希望能够在分钟级甚至秒级得到计算结果。京东是在年开始基于Storm打造第一代流式计算平台,并在Storm的基础上,做了很多优化改进,比如基于cgroup实现对worker使用资源的隔离、网络传输压缩优化、引入任务粒度toplogymaster分担zk压力等。到年,Storm已经成为京东内部流式处理的最主要的计算引擎,服务于各个业务线,可以达到比较高的实时性。

随着业务规模的不断扩大,Storm也暴露出许多问题,特别是对于吞吐量巨大、但是对于延迟不是那么敏感的业务场景显得力不从心。于是,京东在年引入了SparkStreaming流式计算引擎,用于满足此类场景业务需要。

随着业务的发展,不光是对于数据的延迟有很高要求,同时对于数据的吞吐处理能力也有很高的要求,所以迫切需要一个兼具低延迟和高吞吐能力的计算框架,于是在年我们引入了Flink。在Flink社区版的基础上,我们从性能、稳定性、易用性还有功能等方面,都做了一些深入的定制和优化。同时我们基于k8s实现了实时计算全面的容器化,因为容器化有很多的优点,它可以做到很好的资源隔离,同时它有一个很强的自愈能力,另外它很容易实现资源的弹性调度。同时我们基于Flink打造了全新的SQL平台,降低用户开发实时计算应用的门槛。

到00年,基于Flink和k8s实时计算平台已经做的比较完善了。过去流式处理是我们

1
查看完整版本: 京东Flink优化与技术实践